ABDULLAH GÜL UNIVERSITY INSTITUTE OF SCIENCE ELECTRIC and COMPUTER ENGİNEERING ANABİLİM DALI INDIVIDUAL COURSE DESCRIPTION

Course Ttitle	Code	Semester	T+U Hours	Credit	ECTS
NEURAL NETWORKS	ECE-560	FALL+SPRING	3 + 0	3	7,5

Prerequisities and Corpereduisities Introduction to Computer Programming, Calculus, Probability and Statistics, Linear Algebra

Туре	Elective					
Language	English					
Coordinat or	Assist. Prof. Dr. Zafer Aydin					
Instructo r	Assist. Prof. Dr. Zafer Aydin					
Adjunt	None					
Aim	This course provides an introduction to neural networks. Students will learn the concepts behind the neural networks by exploring the fundamental theoretical principles and gain practical experience by applying the techniques on selected problems.					
Learning Outcomes	 Explain the mathematical and algorithmic principles of neural networks Solve a machine learning problem by applying the appropriate neural network methodologies Implement neural network methods using an appropriate software Apply a neural network method to a real problem 					
Course Content	 Perceptrons Network training Error functions Regularization Bayesian neural networks Self organizing maps Extreme learning machine 					

WEEKLY TOPICS AND PRELIMINARY STUDY					
Week	Topics	Prelimanary Study			
1	Introduction: single and multi-layer perceptrons				
2	Network training: gradient descent algorithm, batch learning, minibatch learning				
3	Network training: Error backpropagation algorithm				
4	Error functions: sum of squares, Minkowski, cross-entropy				
5	Network training: Hessian matrix, conjugate gradient, line search				
6	Midterm 1				
7	Network training: Quasi-Newton, Levenberg-Marquardt, Adadelta, Adagrad				
8	Network training: Adam, Adamax, NAG, RMSprop, CMAES				
9	Regularization: L1 and L2 norm, early stopping, tangent propagation, dropout				
10	Combining neural networks				
11	Midterm 2				
12	Bayesian neural networks: posterior parameter distribution				

13	Data processing and feature selection by neural networks
14	Self-organizing maps
15	Extreme learning machine
16	Final Exam

SOURCES	
Lecture Notes	Lecture slides
Other Sources	Course Textbook: 1. Neural Networks and Learning Machines, 3 rd edition, Simon Haykin, 2009. Additional Materials: 1. Neural Networks for Pattern Recognition, Christopher Bishop, 1995. 2. Pattern Recognition and Machine Learning, Christopher Bishop, 2006.

COURSE MATERIALS SHARING			
Documents	Lecture notes, slides		
Homeworks	10		
Exams	2 Midterm and 1 Final Exam		

EVALUATION SYSTEM						
SEMESTER STUDY	NUMBER	CONTRIBUTION				
Midterm	2	30				
Homework	10	25				
Semester Project	1	25				
Final Exam	1	20				
Contribution of Semester Study		80				
Contribution of Final Exam	1	20				
TOTAL		100				

Course Category	
Sciences and Mathemetics	%50
Engineering	%50
Social Sciences	%0

RE	RELATIONSHIPS BETWEEN LEARNING OUTCOMES AND PROGRAM QUALIFICATIONS					
N. B.	Description Overliking the second	Contribution Level			ı	
INO	No Program Qualitications		2	3	4	5
1	The skills of using mathematics, science and engineering information in advanced research				X	
2	The skills of analyzing, designing and/or implementing an original system that will be able to solve an engineering problem					X
3	The skills of using the required software, hardware and modern measurement equipments in their field of research					X
4	The skills of planning independent research and implementing in detail			Χ		
5	The skills of following literature, listening to and making technical presentation, writing a paper in academic level			X		
6	The skills of innovative and interrogative thinking and finding original solutions		Χ			

Increasing from 1 to 5

11101 0 0 0 1111 1 1 1 1 1 1 1 1 1 1 1						
ECTS/ WORK LOAD TABLE						
Activities	Number	Duration (Hours)	Total Work Load			
Course Length (includes exam weeks: 16x total course hours)	16	3	48			
Out of class study time (pre-study, practice)	16	8	128			
İnternet search, library work, literature search	1	5	5			

Presantation			
Homework	10	5	50
Midterm Exam	2	20	40
Final Exam	1	30	30
Total Work Load			291
Total Work Load/ 30			291/30
Course ECTS Credit			7,5